


















































































































SD Times    April 2016 www.sdtimes.com56

BY MICHAEL HACKETT

Mobile apps are a necessity for compa-
nies of all sizes, and apps are getting
more complex all the time. That along
with the dizzying array of devices
requires a well thought-out mobile test-
ing strategy. And it will involve a bit of
risk/reward analysis.

Mobile apps come with inherent
risks. For usability, compatibility and
responsiveness testing, what might be
considered a minor issue on a laptop
could be critical on a mobile device.
People are generally hurrying, multi-
tasking and have limited time and
attention spans when using mobile
devices, so it’s not just bugs in apps that
aren’t well tolerated. Buttons, menus
and forms that are easy to access on a
desktop can be small and frustrating to
use when resized for mobile. Testing
too many devices creates unnecessary
expenses; too few devices risks lost rev-
enue from app abandonment. Howev-
er, taking time to understand the device
ecosystem and the customer the appli-
cation is designed for will enable creat-

ing a test strategy that will balance risk
and return.

Platform matrix
The diversity in devices, operating sys-
tems and screen resolutions makes
determining the right mix of devices to
test complicated. A little basic data
analysis will provide a lot of insight into
determining the best device matrix.
Three manufacturers account for 80%
of devices used in the U.S.: Apple
(43.5%), Samsung (28.7%) and LG
(8.2%). Using that information and
looking at specific target demographics
can give a pretty good composite pic-
ture of the devices predominantly used
by them (which will provide insight into
the operating system version), and
hence which ones to focus the majority
of testing on. Also, the product type
(such as business vs. consumer apps or
games) will influence the target
devices.

After identifying the device matrix,
there is also the option to use a mix of
emulators and real devices. The testing
implications of when (and when not) to
use emulators vs. real devices are large
and complex; hardly anyone would
argue that nothing takes the place of

testing on actual devices. Holding the
device is everyone’s wish. Seeing page
load and performance issues on the
real device is the most efficient, but we
know we can’t physically test every
device. Usability testing on emulators
and browsers with any extensions is
getting better, but won’t always repre-
sent what will be seen on the actual
device. Emulators can be good for test-
ing new functionality or a new compo-
nent design, and they have some
advantages over using actual devices.
Logging faults and capturing screen-
shots are much simpler when working
from a desktop, and some conditions
that are hard to duplicate on real
devices, like low battery power, are
easy to simulate. 

Emulators also tend to be slower
than real devices. Depending on what
type of app is being tested and whether
tests are manual or automated can limit
testing on emulators. Native apps talk
directly to the operating system, while
Web apps talk to the browser, which
talks to the OS. The more layers there
are, the slower the response time. By
being aware of the limitations, selective
use of emulators is an option to increase
test coverage with minimal cost.

What’s your mobile device

Michael Hackett is cofounder
of LogiGear, where he leads
the company’s training 
operations division.

SDT324 page 56,57_Layout 1  3/18/16  9:25 AM  Page 56



www.sdtimes.com April 2016 SD Times 57

Test execution
Normally it is not practical or cost
effective to conduct full testing or full
functional testing on multiple devices.
A practical approach is running a full
set of tests on one or two primary
devices, and then running the smoke
test on additional devices to identify
any obvious issues. However, it
depends on the nature of the applica-
tion. If the app is cutting-edge and can
possibly stress the device’s capability
(processing power, memory, GPS, or
other device-specific hardware), then
more extensive testing is in order. 

One thing to keep in mind when
running basic tests is that most hand-
held mobile devices give priority to the
communication environment. For
example, an incoming phone call always
receives priority over a running applica-
tion. This makes it important to test the
various events and the OS’ multitasking
ability.

A mobile testing strategy is not com-
plete without testing the integration
between the application and back-end
system. This is especially true when the
release cycles of mobile apps and back-
end systems are very different, which
they often are. 

Manual or automated
A lot of basic compatibility and basic
functional testing can be done efficient-
ly with manual testing, but when it
comes to testing lots of devices and
applications that need to be retested
frequently, automation can be an effi-
cient way to scale. The efficiency gain
will depend on the experience and skill
of the automation team—the standard
disclaimer “results may vary” is even
more applicable to mobile test automa-
tion due to all the variables. Also, vari-
ous test automation tools will impact
your choices of emulators vs. real
devices. 

Device management
A big challenge of mobile testing is
sourcing and then management of
devices. Creating the initial matrix is
just the beginning. It’s common for each
manufacturer to introduce three or
more new devices each year, and, on
average, devices are upgraded every two
years. For most companies this makes it
impractical to maintain an inventory of
devices. The growing numbers of cloud
service providers make it possible to
completely “outsource” device manage-
ment, and are a good way to go most of

the time. However, there are limitations
to relying solely on device rental. An
option is to own a manageable number
of the key devices for a majority of test-
ing and then utilize devices in the cloud
for basic compatibility and functional
testing. The knowledge and research for
doing this is a big task.

Fully outsourced option 
Completely outsourcing mobile testing
is a strategy that works well for a lot of
organizations. This eliminates the chal-
lenges and headaches of managing and
maintaining an inventory of mobile
devices. Firms with mobile specialists
typically understand the unique device
and emulator testing nuances, and like-
ly have mobile automation expertise as
well. Better firms, because of their
experience, can also help develop the
device and testing matrix that will pro-
vide the optimum test coverage at the
lowest cost. 

Mobile is rapidly becoming the pri-
mary user interface; with the Mobile
First movement, it already is the primary
interface, which means mobile testing
will continue to increase in importance.
Applying a thoughtful
approach and rational
analysis will go a long
way in developing a
mobile strategy that
will provide the right
level of testing. z

testing strategy?

Read this story on
sdtimes.com

SDT324 page 56,57_Layout 1  3/18/16  9:26 AM  Page 57



SDT324 Full Page Ads_Layout 1  3/17/16  3:59 PM  Page 58



www.sdtimes.com April 2016 SD Times 59

Code Watch
BY LARRY O’BRIEN

If it were illegal to program a computer, I’d have
a machine under the floorboards. I sold my first

program when I was 16 years old, in 1980, and with
any luck I’ll be making my living this way for
another couple decades. I’ve been trying to
improve my craft for longer than some readers
have been alive, but still the other day I read some
code that made me feel like a fraud for even claim-
ing to be in the same field as that programmer. 

Being a programmer is as close as a human can
come to being a magician. You conjure, by concen-
tration and will, a string of arcane symbols that
your silicon brazier converts into anything that
relies on information. When I was a kid, it was a
trope in science fiction that computers were limit-
ed to uses of pure, formal logic (“They deal only
with 1s and 0s”). Wrong! Our industry is a great
unending field of rich soil, and all of our accom-
plishments are just the first shoots of grass.

As I write this, my wife is downstairs, immersed
in a virtual fight across a post-apocalyptic waste-
land with a group of allies, the nearest of whom is
sitting on a couch 3,000 miles away. On a whim, I
could stop mid-word in my writing, drive to a cafe,
and pick up the sentence by tapping with my
thumb on the screen while waiting for a coffee.
For that matter, I could dictate while driving and
have that stream of text available to me before I
made my order (via a subscription to Nuance’s
Dragon Anywhere, which I honestly don’t use
nearly as much as I intend to). An epic battle is
being waged between the greatest Go player of his
generation and a system that combines Monte Car-
lo Tree Search (essentially, a random walk) with
deep neural nets (no predefined rule structure or
semantics). As far as I can tell, there’s no reason to
think that AlphaGo (and similar architectures) can-
not grow superhumanly competent simply by com-
peting against variations of itself. Oh, and we also
write code to help our companies deliver value.

But while non-programmers live in this brave
new world, with its digital over- and underlays, only
programmers can call the thunder and harness the
lightning. In our day-to-day work we get hints of
mystery and small hits of reward, but too rarely do
we get the unbridled glory of the fans spinning, the
console filling up with long lines of “...” to assure us
the calculation continues, and then some number

astonishingly close to 0 or 1 telling us that, some-
how, our code has found a solution that we couldn’t
have found in a hundred years.

I remember that first astonishment over a pro-
gram I wrote that solved an optimization problem,
but unlike the cliché of never being the same as
the first time, equal and greater thrills have come
to me over the years (interesting algorithmic chal-
lenges are not nearly as common as the textbooks
say, but they’re out there!). We are as privileged in
our lives as those who witnessed the harnessing of
fire, or who lived in the great cities of Europe dur-
ing the Renaissance. 

I’ve also had the privilege of sharing my per-
spective over the years. In the early 1990s, I edited
a few programming magazines and worked with
Ted Bahr and Alan Zeichick: the B and Z in 
BZ Media. More than a decade ago they and editor
David Rubinstein were kind
enough to give me this column
and a free hand to write about
the challenges and joys of soft-
ware development. I’m grateful
to them, and the eternally
patient Adam LoBelia, for their
forbearance on some of my topics and my tardiness
on some (many) of my deadlines. 

There’s an old saying that goes, “Those who can,
do. Those who can’t, teach.” Or, perhaps, “Those
who can’t, write columns and consult.” My deepest
thanks go to the readers who have mostly been too
polite to stand up and shout “How dare you spout
such gibberish?”

My impolitic views have occasionally caused
some heartburn to management, but Bryan
Costanich and other executives at my company
have always forgiven my excesses. That works at a
small company that has a narrow focus. But, as has
been covered in SD Times, my company was
recently acquired by a much larger one, where it
would be vastly harder to avoid stepping on toes
and where people mistaking my stupid opinion for
company policy would have greater consequences.

So this is my last “Codewatch” column. I still
have many opinions about the right and wrong
ways of writing software, but it all boils down to
this certainty: 

Those who can, code. z

Those who can, code
Larry O’Brien is a 

software developer who
lives on the Big Island of
Hawaii. Read his blog at

www.knowing.net.

We are as privileged in our

lives as those who witnessed

the harnessing of fire.

Read this story on
sdtimes.com

SDT324 page 59_Layout 1  3/18/16  1:17 PM  Page 59



60 SD Times    April 2016 www.sdtimes.com

Guest View
BY ANDREW PHILLIPS

More and more enterprises are realizing that a
streamlined Continuous Delivery pipeline is

an integral part of extracting maximum business
value from the DevOps movement. The potential
benefits of rolling out more frequent software
deployments are enormous, but speed, agility and
innovation must be balanced with stability and
quality. Refocusing everything on delivering cus-
tomer value quickly is much easier said than done.

How do you overcome the challenges of imple-
menting such a massive change in a large enter-
prise? How do you shift mindsets and find an
effective strategy? Every business is different, but
here are some practical tips to keep in mind that
worked for ING Bank. 

1. Simplify and streamline. Complexity is your
enemy if you really want to be agile. If you can stan-
dardize products and build simple services, then it’s

much easier to deliver quickly.
Develop shared services that will
work across different countries
and portals. Always look for ways
to simplify what you’re doing and
streamline processes, starting
with your IT landscape.

2. Start small. Don’t try to
implement a full Continuous Delivery pipeline on
day one. Start small and create the feedback loop
you need in order to learn and improve. What is
the minimal viable product for the business? What
is the minimal viable product for IT? What needs
to be in place for you to get started? It’s only by
beginning with these small steps and getting feed-
back that you can work out the right strategy.

3. Focus on adding value. Remove obstacles so
that your engineers can work on developing valuable
software. Figure out where you can automate repet-
itive operations activities and testing. Keep compli-
ance in mind from the outset. When changes are
tested automatically, you can get fast feedback that
shows you how to improve, keeping the focus firmly
on adding value. Your Continuous Delivery pipeline
is a means to an end, which is to deliver great soft-
ware to the customer. Never lose sight of that.

4. Build and maintain your pipeline. It’s
important to remember that your Continuous
Delivery pipeline is also software. You have to
maintain it carefully. You need to upgrade swiftly,

but be aware of compatibility challenges between
tools. As you start with an automated build process
and stir automated testing into the mix (followed
by the QA process and automated deployment),
the management becomes complex. You are build-
ing a system that should evolve and improve, not
something that’s set in stone.

5. Orchestration and the big picture. You
need a vision that allows you to orchestrate, identify
issues in advance, and mitigate risks. If you can’t
accurately analyze what’s going on inside your Con-
tinuous Delivery pipeline, then it’s hard to improve
the development process. Release orchestration can
give you the insight and control you need. Senior
Analyst Amy DeMartine of Forrester Research rec-
ommends that companies automate the delivery
pipeline to improve speed, flexibility, visibility and
control. “Creating a standard delivery pipeline as a
service removes variability from the delivery process,
creating checkpoints where you can apply visibility
and control. Visibility across the entire pipeline gives
an easy and instant view of release health," she said.

The same principle that prizes fast end-user
feedback in agile methodology also applies here.

6. Continuous improvement. When you have
all this data, you can use it to identify bottlenecks
in your process and work out how to remove them.
Visibility is also good for cohesion, encouraging the
whole team to pull together around a shared goal.
Where can you speed things up? What can be
tweaked to reduce the cycle time without impact-
ing software quality? You should always be looking
for ways to streamline the release process, but
understand that it takes time and effort to improve.

7. Prove and challenge. Compile evidence as
you work to improve your software delivery process.
It should be clear that each step you take provides
some business benefit. Transparency makes it easier
to audit and ensure compliance, but it also helps to
secure a wider buy-in across your enterprise. Armed
with evidence, you can challenge other departments
or existing processes that may set barriers to even
greater speed and efficiency.

These attitudes and principles will help you to
focus on delivering the best software possible quick-
ly, regardless of the apparatus you use. If you can
propagate the right mindset within your enterprise,
you’re on the path to accelerated software delivery. z

Increasing software deployments
Andrew Phillips is vice
president of DevOps
Strategy for XebiaLabs, 
a provider of software for
Continuous Delivery and
DevOps. 

It’s important to remember

that your Continuous Delivery

pipeline is also software. You

have to maintain it carefully.

Read this story on
sdtimes.com

SDT324 page 60_Layout 1  3/18/16  9:23 AM  Page 60



www.sdtimes.com April 2016 SD Times 61

Analyst View
BY AL HILWA

Microsoft releases SQL Server for Linux.
Microsoft joins the Eclipse Foundation.

Microsoft strikes a deep partnership with Red Hat.
Microsoft open-sources .NET and C#. Microsoft
releases Office for iOS. At this point we should col-
lectively let our jaws rise to their natural closed posi-
tion and understand that the game has changed.

The reality is that Microsoft means business as
a multi-platform open-source player. In fact, we
should have every expectation that in the future
Microsoft will release more big products for Linux
and more technologies in open source. The ques-
tion is what has changed and why is Microsoft
doing this? The simple answer is because the mar-
ket has changed.

In the new cloud and devices world, what mat-
ters is not the software licenses you sell, but the
volume and value of services and devices you sup-
port. Amazon has proven this formula with the suc-
cess of AWS, and Apple and Google with the suc-
cess of iOS and Android. To be clear, software
continues to eat the world, and the provisioning of
great cloud services and the making of great
devices requires constant innovation and evolution
of software IP. But the value created with the soft-
ware is no longer monetized exclusively with a
license sale. Instead, it may be monetized with
cloud usage fees (AWS), subscriptions (Adobe),
advertising (Google) or devices (Apple).

We are witnessing Microsoft execute a long-
term shift to wean itself off license-based software
monetization to a broader set of monetization
strategies. Enterprises and consumers don’t want
to own software like they used to, having learned
that the perpetual licenses afforded them little in
the way of control. Enterprises are now more com-
fortable renting software and letting its creators
manage it. Similarly, consumers are comfortable
paying for shiny new devices every year or two, and
buying apps or app subscriptions. Vendors have to
adapt to this shift, and Microsoft, to its credit, has.

Azure is a full-service cloud that is intended to
compete for every cloud workload. Providing a
diversity of Linux images to run enterprise apps is
an imperative for business success. That Microsoft
products like SQL Server have to come to Linux
over time is also an imperative if these products are
to compete on an equal playing field with multi-

platform alternatives. We should notice that as
Microsoft transforms and the market business mod-
els change, the platform wars remain alive and well. 

The platform wars are not going away
Eclipse traces its roots to efforts inside IBM to bat-
tle Microsoft’s encroaching inroads in application
development in the late 1990s. Microsoft’s low-
priced Visual Basic and later .NET and Visual Stu-
dio tools were winning developer hearts and minds
in a world of more expensive Unix IDEs. IBM
made a decision to turn the Eclipse tools frame-
work into open source and later formed a founda-
tion to evolve it. The effort largely accomplished its
mission of creating a rich tool ecosystem for Java.

The strategic battles over tool platforms have
not gone away, but have morphed into cloud plat-
form wars, where IBM is moving fast to become a
top full-stack player, and also
into language wars, where IBM’s
partnership with Apple is push-
ing the recently open-sourced
Swift language into cross-plat-
form mobile development to
compete with Microsoft’s C# and
its Xamarin acquisition.

Microsoft SQL Server traces its roots to a part-
nership with Sybase to support OS/2 in the late
1980s. Sybase pioneered a client-server model for
its Unix-based relational database, and Microsoft
wanted it for the new operating system. After the
1990 breakup with IBM over OS/2, Microsoft
proceeded with Windows and acquired code
rights for SQL Server from Sybase to evolve it
exclusively for Windows—until last month, when
a Linux version was announced.

While by now the SQL Server code has been
effectively 100% rewritten (at least once), it is a
point to marvel that its lineage goes back to Unix.
Being available for Linux will ensure that the data-
base wars will continue no matter the OS or cloud.
The difference now is that Microsoft is playing
without a handicap.

Those of us observing the market for a couple of
decades may not stop marveling at the broad shift
Microsoft is making, but in the context of new
cloud and devices economics, this is really the only
sane path forward for the company can take. z

Microsoft and the new market realities
Al Hilwa is program

director of application
development software

research at IDC.

As Microsoft transforms and

the market business models

change, the platform wars

remain alive and well.

Read this story on
sdtimes.com

SDT324 page 61_Layout 1  3/18/16  1:17 PM  Page 61



David Rubinstein is 
editor-in-chief of SD Times.

62 SD Times    April 2016 www.sdtimes.com

Read this story on
sdtimes.com

Industry Watch
BY DAVID RUBINSTEIN

People can find out in as little as 15 minutes if
they’re paying too much for their auto insur-

ance. There’s even a little green gecko to tell them so.
Determining if you’re paying too much for soft-

ware, though, might be a more complex task. Fail-
ure to understand and manage your licenses can
lead to staggering costs, and even risk to your
organization.

A recent survey by Flexera Software, a software
licensing solutions provider, reveals that a large
percentage of companies are out of compliance
with their software licenses, meaning they have
more software installed than to which they’re enti-

tled. The study also found that
93% of organizations claimed to
be spending on software they’re
under-utilizing—so-called
“shelfware.” This kind of waste is
the most common expense, and
according to Flexera, “is running
rampant in enterprises.”

“Clients have waste and own more software
than they need, and with other software, they’re
using more than they’ve paid for,” said Ed Rossi,
vice president of product management at Flexera.
“The ways that software can be installed and dis-
tributed are difficult to track.”

There are a number of reasons why organiza-
tions pay for software that ends up not being used,
and most of them come down to a lack of software
asset and licensing management, Rossi said. Say a
person leaves his job. In a development shop, this
could mean an IDE instance or a build tool is sit-
ting idle while the company searches for a replace-
ment for the developer. But when one is hired, the
company will often provide a newer, updated com-
puter on which to work, and then license more
tools while still paying for the other instances.

Or, Rossi pointed out, when companies add
server capacity, they could be doubling the use of
software without knowing it due to the complexity
of much of today’s licensing. “This,” he said, “is
exacerbated by virtualization. You can easily lose
track of licensing associated with that.”

Flexera’s survey focuses on proprietary, com-
mercial software, and does not look at open-source
licensing, which Rossi said “has its own unique
challenges.”

So, he said, does the growing trend of cloud-
hosted software, even as he acknowledged that the
vast majority of licensing today remains perpetual
and on-premises. “There is more subscription and
Software-as-a-Service being seen,” he said. “This
can address in theory the problem of compliance.
With SaaS, you have monitoring. You pay for 100
users, and the 101st user can’t log in.”

But the other side of that coin is buying a SaaS
product for 100 users, but only 60 employees are
using it. “If you don’t make use of what you
licensed, you’ll never recover that money. With
software you own, you know you’ll install and get
value and benefits of the product,” said Rossi.

He made a point to say that asset management
can be an important part of an organization’s cyber-
security strategy. By ensuring that only licensed
software can be installed and executed, it cuts
down on the risk of malicious attackers finding
software that can be exploited from the outside.

So what’s the bottom line on all of this? According
to Flexera’s 10th “Key Trends in Software Pricing &
Licensing” report, for 2016, enterprises are paying as
much as 25% more than they need to, because 25%
of what they’re paying for isn’t being utilized.

Rossi did note that vendors are increasing the
number of audits they’re doing of their customers
to help them save money. That is a change from the
old days when over-licensing was overlooked by
vendors who were profiting from unused software.
But increased audits can be problematic. “It can
put a damper on the relationship [between vendor
and customer], and it’s taxing in a number of ways.
And then, from a straight-up dollar perspective, it’s
an unplanned expenditure,” he said, that has not
been budgeted.

Where companies really get hit is with “true-
up” costs of licensing, which apply when vendors
find that companies are using more software than
they’ve paid for. “The costs there can exceed US$1
million or more,” Rossi said. The study showed
that 20% of respondents admitted to paying more
than $1 million, with 2% admitting more than $10
million in true-up costs.”

So it might take more than 15 minutes, and
there’s no gecko to guide you, but your enterprise
should get a handle on this and find out if you’re
spending too much on your software. z

Are you paying too much for software?

Enterprises are paying as

much as 25% more than they

need to, because 25% of

what they pay for isn’t used.

SDT324 page 62_Layout 1  3/18/16  1:59 PM  Page 62



“This was a great conference that addresses all levels,
roles and abilities. Great variety of classes, great 
presenters, and I learned many practical things that 
I can take back and start implementing next week.”

—Kathy Mincey, Collaboration Specialist, FHI 360

SPTechCon™ is a trademark of BZ Media LLC. SharePoint® is a registered trademark of Microsoft.  

“This is the most informative conference I have been to in years. 
The technical discussions gave me a much better understanding of 
direction, advantages and challenges we face with this massive platform.”

—Jamie Tyndall, Manager, Application Development, Business Information Group

A BZ Media Event  

Learn what’s new in 
SharePoint and Office 365!

BOSTON!

Attend

June 27-30,2016
The Sheraton Boston

Register
Early

and SAVE!

Whether you want to learn about what’s coming 
in SharePoint 2016, are still making the most out 
of SharePoint 2013 or even 2010, or getting started 
with Office 365, you will find the SharePoint and 
Office 365 training you need at SPTechCon.

THESE POPULAR SESSIONS ARE BACK!
Branding Modern SharePoint
Building Simple Dashboards in SharePoint
Creating a Great User Experience in SharePoint
Simplifying File Organization with Enterprise 
Keywords
Cool Dashboards, Charts and Visualizations 
for Power Users
Tackling Search – How to Create a Winning 
Search Strategy

STAY CURRENT WITH NEW SESSIONS!
Hybrid Dilemma: Dividing Content Between 
Cloud, Office 365 & SharePoint 2016

Power User Tools of the SharePoint Trade

Stand Back, We’re Going to Do (SharePoint) 
Data Science

Demoing Live Protection – DLP in SharePoint
2016

Building a Native Mobile SharePoint App 
with React Native

Navigation: A Step Towards Success in SharePoint

www.sptechcon.com

SDT324 page 63_Layout 1  3/17/16  4:00 PM  Page 1



Q1 2015 Q2 2015 Q3 2015 Q4 2015

Jan Feb Mar Apr Aug Sep Oct NovMay Jun Jul

06/01/2015 07/01/2015 08/01/2015
0

10

20

30

40

50

60

70

SDT324 Full Page Ads_Layout 1  3/17/16  4:00 PM  Page 64


